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Section 2. Introduction 

Ihe Past Pourier Transform (PTT) ai d modular ari thee tic are 
two distinct techniques which recent];/ have been employee to 
increase the efficiency of numerous air^rithms in the crea oi 
svmbolin and algebraic manipulation.  ktivated by work done on 
fast large integir multiplication by Sck riiage and Strassen [11] 
and by Knuth [7], this paper analyses t.c question ol when these 
So techniques1^ be utSlzed concurred ;4y. The desirabilitj- of 
the  convolution property of the FH suggests a practical 
definition for the support of an PPT, v Me a generalization of 
the modular rings of integers motivates * re|?o^iec^?^ 
of  a finite computation structure.   A Finite Commutation 
Structure is defined to be a commutative ring with unity, and oi 
fihiter non-zero characteristic.  This report first completely 
characterizes the modular rings of inte^i :r, which support the m 
by considering the prime factorizatici ol the mod"lu?;, ™^ 
cLracterization is then extended to SJji}?^^^^1^ 
results  Theorem: Let R be a finite coaputation structure of 
S3ScterlSS^. Then R will support a K-point PFT if K divides 
S-lfor each prime p dividing m. fhe paper then concludes with 
Samples of the application^of this result to the problems of 
computing  prooucts  and  powers  of  symbolic multivariate 
polynomials« 

Section 2. The Discrete Pou- ier Transform 

Definition: Let R be a commutative ring with unity, written as 
TriSiM2fnte?er > 1, and WK an element cfR of order K; i-e.,^ 
primitive K-th root of unity. Then the DISCRETE ™pw 
TRANSPORM (DPI) of the K-sequence (a0,a1,.. .,a(K~T;; is tne K~ 

sequence 

(Ä0tfi1,...,a(K-1)) 

given by the following equations: 

i = 0 

W 
1 3 

0<j<K-1  (1) 

ÜIIWI OhrnM mm 
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Definition!    Assuming    the    same conditions   as atove,    and also 
thatl   possesses a multiplicative    inverse in R (i.e.  1/K)      then 
the    INVERSE DISC^TE EOUFJER TBAV.SFOm    (IDFl) illAe k's^uence 
iau,alf ...»aCK-TTJie tne K-sequence 

(aofÄi,...,a(K-i)) 

given by the following equations: 

K - 1 
^Tll II 'I |-| \ ä (1/K) zz. 0<i<K-1  (2) 

If we consider the term ai*WK»*(-i»j) tobe rewritten as the 
equivaienjt term 

) 
*   ai*WK»*((K-i)»J) 

then we can rewrite the above equation as 

K - r 

a 
d 

(1/K) a   W 
K-i  K 

i d 
(la) 

If we now define a(K) «= a(0), then the inverse DiT can be 
computed from the DJT by merely "flipping" the input sequence, 
here, fli^ijfc consists in replacing the i-th term by the (K-i)- 
th term. Thus the same computational algorithm (for the DFT) can 
be used to compute both the DFT and the IDfT. As might ^ 
expected Arom the terminology, under the right conditions, ths 
two transforms aie inverses of each other, and thus provide 
different representations of K-sequences. Tha remainder of this 
paper will be concerned with determining some of the "rirtit" 
5SndlÜSn/ ^f? whiSL?he DIT «»" be inverted. Note, also, that 
JSf„ DfTJL^

and^S IDiT) are linear transformations from R«»K to 
R**K, (where R**K is the ring of K-tuples of elements of R with 
SSS9K5? addition and multiplication) since the quantities 
WK*»(i*o) are all "constants" for each application of the EW. 
lor more inlormation on this approach to the phenomenon of the 
DFT, see Nicholson [1Ü]. 

The computation of the DIT by classical techniques usuallv 
involvea 0(K*»2) operations,  as the  computation of  each 

/ 

.     rtbli» ■MB aMnti 
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transformed element took K multiplications followed by K-1 
additions. However, Cooley and Tukey 15] demonstrated a 
computation scheme by which the DFT of a K-sequence could be 
computed in only 0(K log K) operations. This method has become 
known as the Fast Fourier Transform (FIT). The key concept in 
the reduction of the computation tine involves the fectofRation 
of K. In other words, for K highly composite, the DFllcwi be 
computed by forming sub-sequences of the original sequence, 
performing a DFT of fewer elements on them, then assembling the 
resulting sequences. The goal here is not to develop the theory 
surrounding the FFT (see Cooley-Tukey [5]) but rather to instill 
some f et ling for the immense efficiency of this algorithm and 
thus to motivate the desire to find as many ways as possible in 
which it can be invoked. During the remainder of this paper, the 
terms DFT and FIT will be used interchangeably, as they refer to 
a computation function and a computatiotv algorithm which 
correspond to each other. 

Hie particular virtue of the DBT in many applications results 
from the following: 

Definitions Let A = (a0,a1,.. .,a(K-1)) and B = (b0,b1,.. .,b(K- 
1)) »e two K-sequences in R. Then the CONVOLUTION OF A AND B, 
written A*B, is the K-sequence C ■ (c0,c1,.. .,c(IW)T"where""tTie 
c;) are defined as follows: 

% ' - IZ ai Vi        <4K-1-(3) 
i « 0 

where bn for n < 0 is defined as b(n+K). 

Convolution Property of the DFT: 

Let A and B Le as in the precedL.g definition. Let A', and B' be 
the DFT's of A and B respectively. Then the following equation 
is true: 

(A*B)# = A# x B' (4) 

where "x" means component-wise multiplication of K-sequences. In 
other words, the DFT transforms the convolution operation in R**K 
into the component-maltiplication in R»*K, according to the 
following commutative diagram: 

f 

j 

i*iii> n» «Wittwit» 
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DFT x DPI 
R*»K x R**K —> R«*K x R**K 

IMXM 

DFT 
R**K 

vA 

tr 

QED. 

AB a result    of (4), the   convolution of two   K-sequerces can   be 
computed in the following «ay: 

1)compute the transforms A' and B'.of A and B 
respectively, 

2) perform componentwise multiplication on A   and E- 
to obtain a K-sequence C. 

3) perform the inverse DFT on C to obtain the 
convolution sequence C» 

Thus, the DFT provides a method (though not an intuitive one) for 
computing the convolution of sequences, assuming that the inverse 
DFT of step 3 is possible; i.e., if we can turn the bottom arrow 
around in the above figure. What this requireaent amounts to is 
that we must able to compute a "true" inverse DFT. 

Let us now look into the requirements for the invertibility of 
the DFT. If we apply the inverse DFT of equation 2 to the 
sequence of   elements computed    via thö   DFT of   equation 1,    the 

tbMaAemm 
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following equations.will hold? 

As a result, the MIT, as defined originally, will be a true 
inverse <==> a"hat-hat sub 1" = a»sub 1" for all 1 < K-»1 < > 

K-l 

4*0 
CO 

.iu-ji^ 
= vc S 

ö.i.ji 
o 4 i, Jl t k 

T^SäL^l ♦S1**!1?^ T 1 lf Ui end 0 otherwise.) Notation: 
inasmuch a« the following quar.tity appei\rs quite frequently in 
the rest of this paper, we use the following -.lotation: 

S. £  ZU, to' 
Using this notation, we obtain the requirenent: The ICFI is an 
tZ^^trl^l^t1" ' L^SSiW^ Thuß' a r^omble beslS upon which to build a useful DPT (i.e., one able to produce the 
convolution) is to define: v ™ *** 

Definition: Ltt | bf > 1.  The Support of e K-point DIT  is a 
coüutatlve ring R with identity su^TEat ~ iSL-L± — Xb * 

(S1) There exists ,1/K in R. 
S?) There exists wk in R whose order = K. 
(S3) S-sub 1" « K delta(0,l) for ell 1 < K-1. 

Note that the support of an IFF is an "essential- property of a 
ring ; i.e., if a ring R supports a K-point m and R is 
contained in a larger ring R#, then R' also supports K-point 

Two exaaples of support of a K-point DFT are thecoaplex nuaber?« 
with wK being the conplex number cos(2Tr/K)+Pr sinC^K), and 
also the algebraic n«»ber field Qft], where t is a firmal 
solution to the equation x»*K = 1, and'Q is the field of raUonaJ 
numbers. 

Section 3. finite Computation Structures 

This section deals with the problem of developing a sufficiently 
rich  generalization of the structure of modular rings of 
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la precisely ieoduli?ParitSBl«c ^if wf?!^6^1!^ ^""metlc 
of a data structoe wlS^ a co«tt,iLW UA!nable ^."Celling 
thinking, „e propose the foUowi^1^ ** a   re6ult cf   thls 

gth"^' htMgg Cg'Wtetlon Structure is a coaautstive rin? 

^ = 0 for au a in S.'rSgf ^"L^] »d^fSt"^^ that 

o^ ?Äf?r.ß11 integers ■• 
ll  ^vSfUf 'J2»-^301^ for all m and all n. 

^S»^^ ^Ss?' ^ -^cation is 

^£ii£Ii 4. Characterization of Modular fiir^s of Integers 

stnÄs tVlÄJStS?Sra
th?t Cif ?i^ flnite computation 

the case of iod3ar rin^s^J'iiL^L1^^8* necessary to consider 
rings   is LteSdeTineSf^v^ci     ^ iSF&.J!* one ?f    these 

this section, the author as^e6
; the LaderP S hfir? Jn 

urderstanding of elementar «uaber theon^ SSto Grosso ^i? 
and elementary group theo^r (as in Bi?£??if^d Sa^rJI])!6^ 
Note;    In    the remainder of 
notational conveniences; the paper w.i   will use the fcllowing 

/ 

i nil iiwnii tniMi^iilmimi« MbnCl 
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Printed 
pi 
ei 
pi*#ei 

Zpi»*ei 

Z(m) 
Z pi**ei) 

wK 

Theorem A: 

Written 
,*• 

'hlm*k 

Pollard's theorem. 
ti 

leaning 
p sub i, a prime number 
e sub i, a positive integer 
p sub i to the e sub i power 
The ring of integers Eodulo m 
The ring of integers modulo 
the ei-th power of the prime ti 
The multiplicative group of Zr 
The multiplicative group cf Zri»»ei 
phi of m, the Euler phi-function 
K-th root of unity 

Let o be odd and 

(ST) Since K divides each pl-f for all i, then K and pi are 
relatively pnne for all 1. This implies that K is 
th^orÄ Pof'?hi0 the P0^1"8 Z*  th1 P1 s "S «iSo io ww product of the powers of the pi's.  Henc^  k ic: 

(K) By fe^esis. there is an eleaent wK of order K for each 

|f p|n W455. grÄ«. ^ IS^ä^ 
Proof of Lemma: 
TSirrK'^2Sf? ^^ thVs' K ^ö p are relatively prime. 
/oo\ t:   r®sult» K has an inverse in Zp**e. 
^SZ; By   hypothesis,  there   exists an   element wK    of order 

Zip**e. 

(S3) Again, the case 1   « 0 is    trivial, so w«   assume 1 is 
zero. Consider now the expressions for S'^ub 1" 
SHP ^WK*tK1=£"SutiM (wKil)-    Clearly,  the left hand 
of    n ffi e a£OVe fS^01" J5   zero M wK ^ a K-th   root ol    u.jity.      We need onl-- show that    SMsu^ 1" = 0 (modulo 
tSri^ ^JS* d0 y?zh showinf that ^"W (module p) for    then p**e    would divide SMsub    1".      NowT if   wK ~ ^ 

As a 

K in 

non~ 
We 

i 

i 

-V 

rfriL-' dbrittR 
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(nicdulo p) then (wK,p)=1 and hence v/K would be^ an elerrent 
zf JSSi ■ufcKÄp (!; in ?p**e s^h that (w^)=T} Sf 
nas order (p-i;p*«(e-1).  But wK is also an elenent of 

(SS1^™:  Thus'wK ^1 (,il0<äul0 p) ■" E"sut i" ■ ö 
QED for Lemma. 

SoS^JS? ^v'Jth^ ^ P"0*"   «"   the Theorem,    we   now let   n - 
«    taorfhAt'z;!^6"^*?6 Pl 'S distinctJriSes.    By lomml Ä. 

ffinese   R^maiSer   Al-riff (aT^jlo«   Sf flj ^l^ll^t 
discuesior of the   various Chinese Remainder   ii i^ tw?*!!* 

SSaSS'S^I&ii-ad zhTpo0rts
B^1n?^'E!

he three 

QBD. 

H!f_,nSxt.Theo^e,,1 Feints the converse   to Theorem A and as si.oh 
ÄllT'f! C0,Dpietely   theodd   "<»»«rs whi^aS TOt UK- 

Zp!"ei'^ftiri!leBent VK   in ** suc', t^t «   ^ ^ K8?« 

(p:2ia >TTZpi**ei w 

v^ieree^ the order of Z(pi«»el) Is given by 

li ^Ifi'^t   c^-i^. c.-i 

,.Ji..^hi^>. 
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We know that if wK has order K in Z(m), then K must divide the 
order of Z(in). Since K doee not divide any pi, then K divides 
the product prod(pi-1fit1fr). Kowever, we now show that K 
divides each factor pi-1. By the 3rd requirement for K-pcint FFT 
support (S3}» we axe guaranteed that S'^ub 1" = 0 (modulo m = 
pi**ei), for all 1 < K-T and not zero. Since the pi**ei are all 
relatively prime, ^hen SMsub l" = 0 (modulo pi**ei) for all i. 
Wow consider the order of wK in Z(pi«*ei), say K1. Clearly, K1 
divides K. If K1 does not equal K then S-sub KV = 1+wK«*K1+ 
wK»*2K1+...4=1 +1+1..,=K (module pi**ei), since the order cf wF is 
K1. But K and pi*»ei are relatively prime for all pi and hence K 
f< 0 (modulo pl**ei). We are then lieft with the conclusion that 
if K1 ^ K, then &*&& Kl" j^ 0 (mod pi**ei), which is a 
contradiction. !Phus, wK has order K in each Z(pi**ei). Thus, K 
divides the order of the group, i.e., (pi-1)pi**(ei-l). Since K 
and pi are relatively prime, then K divides pi-1 for every i. 

QED. 

Having finished categorizing completely the case of odd moduli, 
we consider now the possiblity of even moduli supporting K-point 
FfT's. Tk.is possibility is discarded by the following theorem. 

Theorem C; Ko even modulus can support an FFT. 

Proof: We assume here that K is non-trivial; i.e., K > 1» In 
order to support a K-point FFT with a modulus m which is even, we 
must have that K possesses an Inverse in Zm. This condition is 
equivalent to saying that K and m must be relatively prime and 
hence that K must be odd. If there exists an element wK in Zm of 
order K, where we now write m = prod(pi**ei,i5l,'f} with p1=52, 
then by means of the isomorphism described in Theorem B, the 
order of wK in Z(2«*e1) must divide K. However, since the order 
of Z(2*»e1) is 2«*(e1-1), the order of wK in Z(2**e1) can only be 
even or 1. It can not be even as it must divide K. Thus we are 
left with the fact that the order of wK in Z(2«»e1) must be 1; 
i.e., wK = 1 (nodule 2*«e1). In order to complete our proof we 
lock at the possible cases for n: 

Case 1: IB= 2**e1. 
In this case, wK has order 1 
cannot have order K. 

in Zm = Z2*»e1 and hence 

Case 2: m = ml * 2«*e1 where ml is ocld. 
If we now invoke condition S3 for FFI support, then .S"sub 
1" must ■ 0 (modulo ml * 2**e1). Since ml and 2**c* are 
relatively prime, this implies that SMsub 1" = 0 T^yöulo 
2**e1) for all 1 < K. If we now look at S^sub \m ' >wever, 
we find that S"sub 1" = 1 + wK + wK»*2 + ... s ' + 1 + 1 
+ .. .. (modulo 2»«e1) (since wk =1 (modulo 2^»e1)) = K 
(modulo 2«*e1), which is not equal to 0, P^   K is odd. 

itfBta Mhüa 
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Thus. tßmbiV U „ot zero and M have a contradicUor. 

ev^Sl^cf ^rt
C^^10"0". - "ave the rea.lt    that 

QSD. 

Sti^'ar'S^idSs^or 82*22 ?0?blnSs •" th« ««"Its of this rlnea of inÄ^i^^-gf ^^cterlzatlon of %££ 

^cUoä^f ^^„Y SLS.\? »,*« «e need only prove 
If K divides plTforSu'p?^ *? "^in the atove result:Pe 

ajj.eleaent i in z. &£& g ^^^"(Äen^f^ 
Hie arguaer.t proceeds as follows! 

1. Eve^, Z(Pi"fi) Possess prinitive roots of unity: 
ihlcS IMp^lipi^fenf ^1 IT " W^il vpi-«;pi**^ei-i;.    (see GrosEwald [6].) 

2. The element wi defined by 

SS S!d£tiifei?(pi^sM/äw «divides pi.i 
SSere        (ri   n) " ortier(rl)/e«i(n,order(ri)) « K, 

3.   The element wK which is the unioue mttotA*** ^^ -i      x 
to the following family tfSSÄäS ( ^^ ^ 

wK = wl (modulo pi»«ei) i =,1,...^ 

UÄÄreSfM6 fSSä, 2 'he   ^g*j!»l- for odd 
-oh   i and that K is nSflf' gSTS %&S»t ZVuS^ .S? 

L iiMfli imn   tlli ■ 

X 
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exactly the statement of IheoS B. rheoTem *• B and C result in 

Su QEI)* 
SpSSf,' Ävl^ovld^ aVÄf t.*^01*-8   P^ented   i„    this 
rl««. of Inteeers^uÄ^j^^^^ter^lo^of^ .odSa? 

fiamples: 

^SSrirE^Ä2^Lm'f ("^ « - -1). fUT^-i«.+ ^w,*-'   e c?n oniy suüDort 2-^1«+ Mm^'i 
2, 
3. 

Similarlv 7^. y ^P?1«* ^T's (wd 

of the form prod(Teci+lT2»*i-ii l^"^ n 

r and ci   wh^e ^ I^J^J:^ for ^tmy 

^Mon 5: ^tension to Finite Computat ion Structurcr. 

As   we have    seen in ^«rt-i™i    x        ^ 
SPKrti-Polnt ^'s^    We Sow44x?S;J ?h^ain   ?°dular ^««s win 
of the finite computation sJ^cf^S? re£Ult t0 incl^e ^m 
Ttieoremx    if     R     lg     _     ^-s  J* 
characteristic m,  then R «iJäSil*   „computation     structure     of 
*>r evex^ prime J dl^ldinl"^6 a K^St OT ^ « dividel   p?1 

fioof;    Let    K divide    T>-1 fn*. «n 
^forem f we know ttet & s^ts^1?6^? f^1^ ■• ^en by 
the requirements SI, S2 ffi S^Sefil:1?1?*,??- ^ a result, 
« is en fcs of characterl^tir - *Sf^J?11 2 hol<i *« 2/in2. Sinc^ 
R iscmorphic tSz/mlf ^cSisi^i thSe ?Jlstß a subkn« s of 
support    of   an   FFT   InvolvS^B«^-?    the   requirements for 

support IsTssentlal^'th^R^«^^ EÄP^ 

Note:    If  Q-tZ/mz v p <e, 4..     . 
then O-(wK) is a K-th rwt of »n??frp?isS onto a ^ring of R. 
modular K-th roots of ^Uy win^ L4? ?" .T?ue' knowlld^ S^ 
in R. ty   W1J~L « sufficient to compute   PFT's i 

Ktete nnmwffm tttm 
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Section 6: Applications 

The results presented have been applied to the problems of 
computing products and powers of symbolic multivaricte 
polynomials over the integers (see [3] and [4]). The following 
brief example examines the application of the FET in a finite 
computation structure to the computation of products of 
polynomj As, 
let f and g be univarlate polynomials over some coefficient ring 
R, with the degree of f = m and the degree of g = n. We can thus 
write; 

Mi. 

«'. 

♦ <W« 
'*+<* 

The product polynomial h(x) = f(x)*g(x) can then be written as 

h CKN %. Co ■♦■ c.it ♦ c^' ^ ... 

where the coefficients .ci are computed by 

If we set K ■ B+n+l and form 2 K-sequences 

then the K-sequence C given by 

0^ 

'*\ 

C  t Ct, ̂ ., ••. c •»♦14 H ̂  

is precisely the convolution of A and B, as defined in Sectior 2. 
As a result of this observation, if the coefficient ring K 
supports K-point TFI'e, the the product polynomial, h(x) can be 
computed using JPT's as follows: 

1) Form the 2 K-sequences A and B 
2) Apply a K-polnt FFT to each sequence, yielding Ä and B 
JJ Multiply A and B component- wise, yielding in C, 
4) Apply the inverse K-point F?T to obtain C, vhicA is 

the sequence of coefficients of the product 
polynomial h. 

In particular, if the coefficient ring is the integer, we cannot 
gerform PtT s as there are no roots of unity other than 1 and -1. 
owever, if the largest coefficient (in absolute value) in A, B 

or C is bounded by I;, then we can embed f(x) and g(x) In the 
polynomia] ring Zm[x], where m > 2M and Zm supports K-point 

i 

^..^ ^.^A»   MnnaAmtfiiniii 



"" 7--.: 

PAGl 14 

However, since ths ^ximum coeiTicient is less then m/2, then 
h(x) = J(x)-(x) anc we are finished, ^ T      en 

Sunilai'ly,  if the coefficient ring R   = Zfy] (i.e.:    f anc «   are 
?1VSdatr K^ISi^ ^ ^ Vver ^Lifitegers r le^e^l f   and    g in   ^[x^y]    where ■    is    sufficiently IsJrge   and ZFfvl 
sri?Ä^ ä^

1
"' ^ii^i-c^ ^^s j^ 

f(x,y)e(x!y)! Ch0Sen   aPPrliPrJ:kcöiy»    h(x»y)    actually equals 
äLSS^TiiS? of Powers of rolj-nomials proceeds in an aralofous 
K rin^^f^eS

+rff0r^d 0?w
these two'computational rrobferal have indicated that the PFT methods pfovide siwiiflcant 

improvement in the efficiency of these algorithms for a iSSe 
class of polynomials.    (See Bonneau [31 [4]). E 

Section 7: Summary 
I 

Pjfu ^P61" *?■ Presented several results relating modular 
arithmeUc     schemes   and     the   fast     Fourier   TiansfSnn.        l£ 
ST ^v^I ^LSiSS86! 0f mo?uia? rin§s of ^tegers in which the JttT may be computed is completely characterized by the prime 
decomposition of the modulus. SSo. an extension 3 thie result 
for computation structures similar to modular rinFs of integers 
yields a sufficiency hypothesis for the computatiSf of OT?   ^ 

Further research in this area might be motivated by the desire to 
find necessap and sufficient conditions for fer surport in 
ii*ilL C05Puta1

tion structures or in general rings! IPAs ^S 
e^mple, Nicholson [10], using the definition of fFT to be a 
transformation which takes "convolution-proHuct" rinrs into 
^SJS^T^r/1"«!' Prides the reLlt that S's Sre 
ifWil^tiJl71 dAY:LfAon XiSfil (i-e., rings with no zero divisors) 

iJ v rlng contains a particular primitive root of   unitv.      It 
cl^ S ?i^Ef

Slrable t0 eXtend teiiS type 0f result t0 « Wr 
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